
In Swift
Polymorphism

© Copyright Stephen Clark, 2019

What is Polymorphism?

To begin to understand this concept, it’s helpful to know that
the word polymorphism comes from the greek meaning many shapes
(or forms).

poly… = many …morphism = shape/form

In the context of Object Oriented Programming, this means:

“the provision of a single interface to entities of different
types.”

Polymorphism allows the expression of common behavior between
types of objects which have similar traits.

Inheritance vs Polymorphism

Whilst inheritance is a mechanism for allowing existing code to
be reused in a program, polymorphism is considered more to be a
mechanism to dynamically decide what form of a function should
be invoked.

Inheritance can be thought of as one of the mechanisms we can
use to achieve polymorphism in our code via the use of a
hierarchy. However there are other ways to achieve polymorphism
besides inheritance, ways which take a more protocol based
approach, and we will explore these other forms of polymorphism
later in the presentation (Ref#: H).

Inheritance vs Polymorphism

To expand on the concept further, with Polymorphism, the
interface provided by the objects is the same, but what’s going
on under the hood might vary depending on, perhaps, the message
sent, or the type passed to a particular function for example.
Typically then the result will be an appropriate type-specific
behavior/response.

Subtype polymorphism

This refers to where one class or type, a subclass (or
subtype) inherits the properties and behaviors of another it’s
superclass (or supertype).

This means that program functions, written to operate on
elements of the supertype, can also be used to operate on
elements of the subtype.

Static or Compile-Time Polymorphism

This means the ability to have several functions, all called
the same thing, which the compiler can choose between
at Compile-Time. This is depending on the arguments passed, and
achieved through through operator overloading, or method /
function overloading (via static or early binding).

A very simple example of ad hoc polymorphism using operator
overloading is the use of the “+” symbol to denote adding two
Integers where Ints are passed in, or alternatively to
concatenate two strings when Strings are given.

1 + 1 == 2

"Jane " + "Doe" == “Jane Doe”

Static Polymorphism / Method Overloading Example

In this code snippet we have created two
different functions with the same name
“drive()”. Yet we can send different
parameter types to drive using the exact
same syntax, and the complier will
automatically select for us the correct
function to execute based on the type it
detects being passed in, and so we don’t
need to remember a bunch of different
f u n c t i o n n a m e s l i k e d r i v e V a n ,
driveTractor but can take advantage of
this layer of abstraction to make things
easier.

Run-Time or Dynamic Polymorphism

This is polymorphism that happens at run-time and it achieved
via method overriding (though dynamic or late binding).

Let examine what that actually means now with some examples:

Dynamic Polymorphism / Method Overriding Example

1. Create a struct called Driver and give it two required elements of name and age.

2. Create a class called Vehicle and give it a function called drive() and custom init into which we must inject a Driver to create

an instance of vehicle.

3. We subclass Vehicle with a class called Car then we choose to override the drive function to customize the implementation whilst

leaving the interface the same.

4. Now we create an instance of our struct Driver and inject it into an instance of Car called car. When we call car.drive() and

see the output: “Dave has started to drive a Car!”

5. We use the Type Casting (coercion) features of Swift to cast (or upcast) our car (which has the type of Car) as type Vehicle,

it’s superclass.

Links to Liskov’s Substitution Principle

Thinking about our SOLID principles, one crucial principle
here, one inadvertently popularized by Barbara Liskov in a talk
she once gave, is Liskov’s Substitution Principle.

This principle states that if S is a subtype of T, then objects
of type T should be substitutable with objects of type S
without altering or changing any of the desirable properties
that T may have. In other words that objects in a program
should be replaceable with instances of their subtypes without
altering the correctness of the program. If we find ourselves
breaking this principle then we have probably failed to
correctly identify the right set of abstractions we should be
using.

Parametric Polymorphism and Generics

Parametric Polymorphism

This is when code is written without reference to any specific
type, and for that reason it can be used transparently with a
range of different types.

This is most often known as generics, but in the language of
functional programming it can be referred to just using the
term polymorphism.

So a function or a data type can be written generically so that
it can handle a range of values irrespective of their type.

Parametric Polymorphism / Generics

Generics may also be used to increase type safety by setting
expected types during declaration (as these expected types
might be specified to be those which adhere to a
particular protocol like Comparable).

Types that conform to the Comparable protocol in Swift are
types which can be compared using the relational
operators <, <=, >=, and >, or where one element of that type
might be compared with another using these operators.

Parametric Polymorphism / Generics

To use generics in Swift we use what is known as a Generic
Parameter Clause which is a comma-separated list of generic
parameters enclosed in angle brackets (<>) . Each generic
parameter taking the form:

type parameter: constraint

The type parameter is simply the name of a placeholder type (for
example, T, U, V or any word beginning with a capital letter
denoting a generic placeholder type).

And the constraint part is a reference to a type parameter
which inherits from a specific class or conforms to a
particular protocol (like Comparable) or protocol composition.

Parametric Polymorphism / Generics

So in Swift this could typically look something like this:

Conclusion

In conclusion, we have seen what polymorphism means in the
context of Object-Oriented programming and different ways this
can be used.

The advantages of polymorphism include making code more
reusable, and flexible, it can also simplify “the programming
interface [permitting] conventions to be established that can
be reused in class after class.

Instead of inventing a new name for each new function you add to a program, the
same names can be reused. The programming interface can be described
as a set of abstract behaviors, quite apart from the classes
that implement them.”

